Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618957

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor-ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Humanos , Camundongos , Camundongos Transgênicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Tirosina Quinases , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Fator de Transcrição STAT5/genética
2.
Nat Commun ; 14(1): 6185, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794021

RESUMO

The myeloid transcription factor CEBPA is recurrently biallelically mutated (i.e., double mutated; CEBPADM) in acute myeloid leukemia (AML) with a combination of hypermorphic N-terminal mutations (CEBPANT), promoting expression of the leukemia-associated p30 isoform, and amorphic C-terminal mutations. The most frequently co-mutated genes in CEBPADM AML are GATA2 and TET2, however the molecular mechanisms underlying this co-mutational spectrum are incomplete. By combining transcriptomic and epigenomic analyses of CEBPA-TET2 co-mutated patients with models thereof, we identify GATA2 as a conserved target of the CEBPA-TET2 mutational axis, providing a rationale for the mutational spectra in CEBPADM AML. Elevated CEBPA levels, driven by CEBPANT, mediate recruitment of TET2 to the Gata2 distal hematopoietic enhancer thereby increasing Gata2 expression. Concurrent loss of TET2 in CEBPADM AML induces a competitive advantage by increasing Gata2 promoter methylation, thereby rebalancing GATA2 levels. Of clinical relevance, demethylating treatment of Cebpa-Tet2 co-mutated AML restores Gata2 levels and prolongs disease latency.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Mutação , Sequências Reguladoras de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo
3.
Front Microbiol ; 14: 1119002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007485

RESUMO

Hosts can carry many viruses in their bodies, but not all of them cause disease. We studied ants as a social host to determine both their overall viral repertoire and the subset of actively infecting viruses across natural populations of three subfamilies: the Argentine ant (Linepithema humile, Dolichoderinae), the invasive garden ant (Lasius neglectus, Formicinae) and the red ant (Myrmica rubra, Myrmicinae). We used a dual sequencing strategy to reconstruct complete virus genomes by RNA-seq and to simultaneously determine the small interfering RNAs (siRNAs) by small RNA sequencing (sRNA-seq), which constitute the host antiviral RNAi immune response. This approach led to the discovery of 41 novel viruses in ants and revealed a host ant-specific RNAi response (21 vs. 22 nt siRNAs) in the different ant species. The efficiency of the RNAi response (sRNA/RNA read count ratio) depended on the virus and the respective ant species, but not its population. Overall, we found the highest virus abundance and diversity per population in Li. humile, followed by La. neglectus and M. rubra. Argentine ants also shared a high proportion of viruses between populations, whilst overlap was nearly absent in M. rubra. Only one of the 59 viruses was found to infect two of the ant species as hosts, revealing high host-specificity in active infections. In contrast, six viruses actively infected one ant species, but were found as contaminants only in the others. Disentangling spillover of disease-causing infection from non-infecting contamination across species is providing relevant information for disease ecology and ecosystem management.

4.
Blood ; 141(15): 1831-1845, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630607

RESUMO

Gain-of-function mutations in the signal transducer and activator of transcription 3 (STAT3) gene are recurrently identified in patients with large granular lymphocytic leukemia (LGLL) and in some cases of natural killer (NK)/T-cell and adult T-cell leukemia/lymphoma. To understand the consequences and molecular mechanisms contributing to disease development and oncogenic transformation, we developed murine hematopoietic stem and progenitor cell models that express mutated STAT3Y640F. These cells show accelerated proliferation and enhanced self-renewal potential. We integrated gene expression analyses and chromatin occupancy profiling of STAT3Y640F-transformed cells with data from patients with T-LGLL. This approach uncovered a conserved set of direct transcriptional targets of STAT3Y640F. Among these, strawberry notch homolog 2 (SBNO2) represents an essential transcriptional target, which was identified by a comparative genome-wide CRISPR/Cas9-based loss-of-function screen. The STAT3-SBNO2 axis is also present in NK-cell leukemia, T-cell non-Hodgkin lymphoma, and NPM-ALK-rearranged T-cell anaplastic large cell lymphoma (T-ALCL), which are driven by STAT3-hyperactivation/mutation. In patients with NPM-ALK+ T-ALCL, high SBNO2 expression correlates with shorter relapse-free and overall survival. Our findings identify SBNO2 as a potential therapeutic intervention site for STAT3-driven hematopoietic malignancies.


Assuntos
Neoplasias Hematológicas , Fator de Transcrição STAT3 , Animais , Humanos , Camundongos , Quinase do Linfoma Anaplásico/metabolismo , Linhagem Celular Tumoral , Neoplasias Hematológicas/genética , Linfoma Anaplásico de Células Grandes/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
5.
Blood ; 141(5): 453-466, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36095844

RESUMO

Chromosomal rearrangements involving the MDS1 and EVI1 complex locus (MECOM) on chromosome 3q26 define an aggressive subtype of acute myeloid leukemia (AML) that is associated with chemotherapy resistance and dismal prognosis. Established treatment regimens commonly fail in these patients, therefore, there is an urgent need for new therapeutic concepts that will require a better understanding of the molecular and cellular functions of the ecotropic viral integration site 1 (EVI1) oncogene. To characterize gene regulatory functions of EVI1 and associated dependencies in AML, we developed experimentally tractable human and murine disease models, investigated the transcriptional consequences of EVI1 withdrawal in vitro and in vivo, and performed the first genome-wide CRISPR screens in EVI1-dependent AML. By integrating conserved transcriptional targets with genetic dependency data, we identified and characterized the ETS transcription factor ERG as a direct transcriptional target of EVI1 that is aberrantly expressed and selectively required in both human and murine EVI1-driven AML. EVI1 controls the expression of ERG and occupies a conserved intragenic enhancer region in AML cell lines and samples from patients with primary AML. Suppression of ERG induces terminal differentiation of EVI1-driven AML cells, whereas ectopic expression of ERG abrogates their dependence on EVI1, indicating that the major oncogenic functions of EVI1 are mediated through aberrant transcriptional activation of ERG. Interfering with this regulatory axis may provide entry points for the development of rational targeted therapies.


Assuntos
Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Proto-Oncogenes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Carcinogênese/genética , Regulador Transcricional ERG/genética
6.
Dev Comp Immunol ; 134: 104462, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35667468

RESUMO

T follicular helper (Tfh) cells provide help to germinal center B cells for affinity maturation, class switch and memory formation. Despite these important functions, this subset has not been studied in detail in pigs due to a lack of species-specific antibodies. We investigated putative Tfh cells from lymphoid tissues and blood of healthy pigs by using cross-reactive antibodies for inducible T-cell costimulator (ICOS) and B-cell lymphoma 6 (Bcl-6). In lymph nodes, we identified a CD4+ T cell population with an ICOS+Bcl-6+CD8α+ phenotype, reminiscent of human and murine germinal center Tfh cells. Within blood-derived CD4+ T cells, sorted ICOShiCD25- and ICOSdimCD25dim cells were able to induce the differentiation of CD21+IgM+ B cells into Ig-secreting plasmablasts. Compared to naïve CD4+ T cells, these two phenotypes were 3- to 7-fold enriched for cells expressing the Tfh-related transcripts CD28, CD40LG, IL6R and MAF, as identified by single-cell RNA sequencing. These results provide a first characterization of Tfh cells in swine and confirm their ability to provide B-cell help.


Assuntos
Células T Auxiliares Foliculares , Linfócitos T Auxiliares-Indutores , Animais , Linfócitos B , Centro Germinativo/patologia , Camundongos , Plasmócitos , Suínos
7.
Genome Biol ; 23(1): 119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35606795

RESUMO

BACKGROUND: The analysis of chromatin binding patterns of proteins in different biological states is a main application of chromatin immunoprecipitation followed by sequencing (ChIP-seq). A large number of algorithms and computational tools for quantitative comparison of ChIP-seq datasets exist, but their performance is strongly dependent on the parameters of the biological system under investigation. Thus, a systematic assessment of available computational tools for differential ChIP-seq analysis is required to guide the optimal selection of analysis tools based on the present biological scenario. RESULTS: We created standardized reference datasets by in silico simulation and sub-sampling of genuine ChIP-seq data to represent different biological scenarios and binding profiles. Using these data, we evaluated the performance of 33 computational tools and approaches for differential ChIP-seq analysis. Tool performance was strongly dependent on peak size and shape as well as on the scenario of biological regulation. CONCLUSIONS: Our analysis provides unbiased guidelines for the optimized choice of software tools in differential ChIP-seq analysis.


Assuntos
Algoritmos , Sequenciamento de Cromatina por Imunoprecipitação , Imunoprecipitação da Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Software
9.
PLoS One ; 16(6): e0251194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34153038

RESUMO

Computational reproducibility is a corner stone for sound and credible research. Especially in complex statistical analyses-such as the analysis of longitudinal data-reproducing results is far from simple, especially if no source code is available. In this work we aimed to reproduce analyses of longitudinal data of 11 articles published in PLOS ONE. Inclusion criteria were the availability of data and author consent. We investigated the types of methods and software used and whether we were able to reproduce the data analysis using open source software. Most articles provided overview tables and simple visualisations. Generalised Estimating Equations (GEEs) were the most popular statistical models among the selected articles. Only one article used open source software and only one published part of the analysis code. Replication was difficult in most cases and required reverse engineering of results or contacting the authors. For three articles we were not able to reproduce the results, for another two only parts of them. For all but two articles we had to contact the authors to be able to reproduce the results. Our main learning is that reproducing papers is difficult if no code is supplied and leads to a high burden for those conducting the reproductions. Open data policies in journals are good, but to truly boost reproducibility we suggest adding open code policies.


Assuntos
Biologia Computacional/métodos , Análise de Dados , Humanos , Estudos Longitudinais , Publicações , Reprodutibilidade dos Testes , Projetos de Pesquisa , Software
10.
mBio ; 12(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785629

RESUMO

Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with ß-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of ß-lactam antimicrobials. However, during treatment with ß-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with ß-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate ß-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with ß-lactam antimicrobials.IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, ß-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with ß-lactam antimicrobials.


Assuntos
Antibacterianos/farmacologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/efeitos dos fármacos , beta-Lactamas/farmacologia , Infecções por Chlamydia/tratamento farmacológico , Chlamydia trachomatis/genética , Células HeLa , Humanos , Mitocôndrias/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
11.
Leukemia ; 35(9): 2526-2538, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33623142

RESUMO

Mutations in the gene encoding the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) occur in 10-15% of acute myeloid leukemia (AML). Frameshifts in the CEBPA N-terminus resulting in exclusive expression of a truncated p30 isoform represent the most prevalent type of CEBPA mutations in AML. C/EBPα p30 interacts with the epigenetic machinery, but it is incompletely understood how p30-induced changes cause leukemogenesis. We hypothesized that critical effector genes in CEBPA-mutated AML are dependent on p30-mediated dysregulation of the epigenome. We mapped p30-associated regulatory elements (REs) by ATAC-seq and ChIP-seq in a myeloid progenitor cell model for p30-driven AML that enables inducible RNAi-mediated knockdown of p30. Concomitant p30-dependent changes in gene expression were measured by RNA-seq. Integrative analysis identified 117 p30-dependent REs associated with 33 strongly down-regulated genes upon p30-knockdown. CRISPR/Cas9-mediated mutational disruption of these genes revealed the RNA-binding protein MSI2 as a critical p30-target. MSI2 knockout in p30-driven murine AML cells and in the CEBPA-mutated human AML cell line KO-52 caused proliferation arrest and terminal myeloid differentiation, and delayed leukemia onset in vivo. In summary, this work presents a comprehensive dataset of p30-dependent effects on epigenetic regulation and gene expression and identifies MSI2 as an effector of the C/EBPα p30 oncoprotein.


Assuntos
Biomarcadores Tumorais/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/patologia , Mutação , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/antagonistas & inibidores , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Sistemas CRISPR-Cas , Diferenciação Celular , Hematopoese , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Prognóstico , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética
12.
Nat Struct Mol Biol ; 28(2): 190-201, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33479542

RESUMO

NUP98 fusion proteins cause leukemia via unknown molecular mechanisms. All NUP98 fusion proteins share an intrinsically disordered region (IDR) in the NUP98 N terminus, featuring repeats of phenylalanine-glycine (FG), and C-terminal fusion partners often function in gene control. We investigated whether mechanisms of oncogenic transformation by NUP98 fusion proteins are hardwired in their protein interactomes. Affinity purification coupled to mass spectrometry (MS) and confocal imaging of five NUP98 fusion proteins expressed in human leukemia cells revealed that shared interactors were enriched for proteins involved in biomolecular condensation and that they colocalized with NUP98 fusion proteins in nuclear puncta. We developed biotinylated isoxazole-mediated condensome MS (biCon-MS) to show that NUP98 fusion proteins alter the global composition of biomolecular condensates. An artificial FG-repeat-containing fusion protein phenocopied the nuclear localization patterns of NUP98 fusion proteins and their capability to drive oncogenic gene expression programs. Thus, we propose that IDR-containing fusion proteins combine biomolecular condensation with transcriptional control to induce cancer.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Homeodomínio , Leucemia , Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas de Fusão Oncogênica , Animais , Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Células HL-60 , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/fisiologia , Humanos , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Células NIH 3T3 , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/fisiologia
13.
Blood ; 136(4): 387-400, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32344427

RESUMO

Fusion proteins involving Nucleoporin 98 (NUP98) are recurrently found in acute myeloid leukemia (AML) and are associated with poor prognosis. Lack of mechanistic insight into NUP98-fusion-dependent oncogenic transformation has so far precluded the development of rational targeted therapies. We reasoned that different NUP98-fusion proteins deregulate a common set of transcriptional targets that might be exploitable for therapy. To decipher transcriptional programs controlled by diverse NUP98-fusion proteins, we developed mouse models for regulatable expression of NUP98/NSD1, NUP98/JARID1A, and NUP98/DDX10. By integrating chromatin occupancy profiles of NUP98-fusion proteins with transcriptome profiling upon acute fusion protein inactivation in vivo, we defined the core set of direct transcriptional targets of NUP98-fusion proteins. Among those, CDK6 was highly expressed in murine and human AML samples. Loss of CDK6 severely attenuated NUP98-fusion-driven leukemogenesis, and NUP98-fusion AML was sensitive to pharmacologic CDK6 inhibition in vitro and in vivo. These findings identify CDK6 as a conserved, critical direct target of NUP98-fusion proteins, proposing CDK4/CDK6 inhibitors as a new rational treatment option for AML patients with NUP98-fusions.


Assuntos
Quinase 6 Dependente de Ciclina/metabolismo , Sistemas de Liberação de Medicamentos , Leucemia Mieloide Aguda/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Animais , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética
14.
Blood Adv ; 3(13): 1989-2002, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31270081

RESUMO

Signal transducer and activator of transcription 3 (STAT3) exists in 2 alternatively spliced isoforms, STAT3α and STAT3ß. Although truncated STAT3ß was originally postulated to act as a dominant-negative form of STAT3α, it has been shown to have various STAT3α-independent regulatory functions. Recently, STAT3ß gained attention as a powerful antitumorigenic molecule in cancer. Deregulated STAT3 signaling is often found in acute myeloid leukemia (AML); however, the role of STAT3ß in AML remains elusive. Therefore, we analyzed the STAT3ß/α messenger RNA (mRNA) expression ratio in AML patients, where we observed that a higher STAT3ß/α mRNA ratio correlated with a favorable prognosis and increased overall survival. To gain better understanding of the function of STAT3ß in AML, we engineered a transgenic mouse allowing for balanced Stat3ß expression. Transgenic Stat3ß expression resulted in decelerated disease progression and extended survival in PTEN- and MLL-AF9-dependent AML mouse models. Our findings further suggest that the antitumorigenic function of STAT3ß depends on the tumor-intrinsic regulation of a small set of significantly up- and downregulated genes, identified via RNA sequencing. In conclusion, we demonstrate that STAT3ß plays an essential tumor-suppressive role in AML.


Assuntos
Suscetibilidade a Doenças , Leucemia Mieloide Aguda/etiologia , Fator de Transcrição STAT3/genética , Proteínas Supressoras de Tumor/genética , Animais , Biomarcadores , Biópsia , Linhagem Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Imuno-Histoquímica , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Camundongos , Prognóstico , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras de Tumor/metabolismo
15.
Leukemia ; 33(7): 1608-1619, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30679799

RESUMO

The gene encoding the transcription factor C/EBPα is mutated in 10-15% of acute myeloid leukemia (AML) patients. N-terminal CEBPA mutations cause ablation of full-length C/EBPα without affecting the expression of a shorter oncogenic isoform, termed p30. The mechanistic basis of p30-induced leukemogenesis is incompletely understood. Here, we demonstrate that the MLL1 histone-methyltransferase complex represents a critical actionable vulnerability in CEBPA-mutated AML. Oncogenic C/EBPα p30 and MLL1 show global co-localization on chromatin and p30 exhibits robust physical interaction with the MLL1 complex. CRISPR/Cas9-mediated mutagenesis of MLL1 results in proliferation arrest and myeloid differentiation in C/EBPα p30-expressing cells. In line, CEBPA-mutated hematopoietic progenitor cells are hypersensitive to pharmacological targeting of the MLL1 complex. Inhibitor treatment impairs proliferation and restores myeloid differentiation potential in mouse and human AML cells with CEBPA mutations. Finally, we identify the transcription factor GATA2 as a direct critical target of the p30-MLL1 interaction. Altogether, we show that C/EBPα p30 requires the MLL1 complex to regulate oncogenic gene expression and that CEBPA-mutated AML is hypersensitive to perturbation of the MLL1 complex. These findings identify the MLL1 complex as a potential therapeutic target in AML with CEBPA mutations.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/genética , Sistemas CRISPR-Cas , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Leucemia Mieloide Aguda/patologia , Mutação , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Diferenciação Celular , Proliferação de Células , Fator de Transcrição GATA2 , Hematopoese , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Células Tumorais Cultivadas
16.
FASEB J ; : fj201800443, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29939785

RESUMO

Ants are emerging model systems to study cellular signaling because distinct castes possess different physiologic phenotypes within the same colony. Here we studied the functionality of inotocin signaling, an insect ortholog of mammalian oxytocin (OT), which was recently discovered in ants. In Lasius ants, we determined that specialization within the colony, seasonal factors, and physiologic conditions down-regulated the expression of the OT-like signaling system. Given this natural variation, we interrogated its function using RNAi knockdowns. Next-generation RNA sequencing of OT-like precursor knock-down ants highlighted its role in the regulation of genes involved in metabolism. Knock-down ants exhibited higher walking activity and increased self-grooming in the brood chamber. We propose that OT-like signaling in ants is important for regulating metabolic processes and locomotion.-Liutkeviciute, Z., Gil-Mansilla, E., Eder, T., Casillas-Pérez, B., Di Giglio, M. G., Muratspahic, E., Grebien, F., Rattei, T., Muttenthaler, M., Cremer, S., Gruber, C. W. Oxytocin-like signaling in ants influences metabolic gene expression and locomotor activity.

17.
Nat Commun ; 9(1): 1983, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29777171

RESUMO

MLL-fusions represent a large group of leukemia drivers, whose diversity originates from the vast molecular heterogeneity of C-terminal fusion partners of MLL. While studies of selected MLL-fusions have revealed critical molecular pathways, unifying mechanisms across all MLL-fusions remain poorly understood. We present the first comprehensive survey of protein-protein interactions of seven distantly related MLL-fusion proteins. Functional investigation of 128 conserved MLL-fusion-interactors identifies a specific role for the lysine methyltransferase SETD2 in MLL-leukemia. SETD2 loss causes growth arrest and differentiation of AML cells, and leads to increased DNA damage. In addition to its role in H3K36 tri-methylation, SETD2 is required to maintain high H3K79 di-methylation and MLL-AF9-binding to critical target genes, such as Hoxa9. SETD2 loss synergizes with pharmacologic inhibition of the H3K79 methyltransferase DOT1L to induce DNA damage, growth arrest, differentiation, and apoptosis. These results uncover a dependency for SETD2 during MLL-leukemogenesis, revealing a novel actionable vulnerability in this disease.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Leucemia/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Motivos de Aminoácidos , Diferenciação Celular , Linhagem Celular Tumoral , Dano ao DNA , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Humanos , Leucemia/genética , Leucemia/fisiopatologia , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Ligação Proteica
18.
Pathog Dis ; 75(9)2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186396

RESUMO

Chlamydia trachomatis (Ctr) is a bacterial pathogen that causes ocular, urogenital and lymph system infections in humans. It is highly abundant and among its serovars, E, F and D are most prevalent in sexually transmitted disease. However, the number of publicly available genome sequences of the serovars E and F, and thereby our knowledge about the molecular architecture of these serovars, is low. Here we sequenced the genomes of six E and F clinical isolates and one E lab strain, in order to study the genetic variance in these serovars. As observed before, the genomic variation inside the Ctr genomes is very low and the phylogenetic placement in comparison to publicly available genomes is as expected by ompA gene serotyping. However, we observed a large InDel carrying four to five open reading frames in one clinical E sample and in the E lab strain. We have also observed substantial variation on nucleotide and amino acid levels, especially in membrane proteins and secreted proteins. Furthermore, these two groups of proteins are also target for recombination events. One clinical F isolate was genetically heterogeneous and revealed the highest differences on nucleotide level in the pmpE gene.


Assuntos
Chlamydia trachomatis/classificação , Chlamydia trachomatis/genética , Variação Genética , Genoma Bacteriano , Análise de Sequência de DNA , Proteínas de Bactérias/genética , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/isolamento & purificação , Feminino , Humanos , Mutação INDEL , Sorogrupo , Doenças Bacterianas Sexualmente Transmissíveis/microbiologia , Adulto Jovem
19.
Sci Rep ; 7: 41002, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145450

RESUMO

Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos/metabolismo , Neuropeptídeos/metabolismo , Receptores de Vasopressinas/agonistas , Substituição de Aminoácidos , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/isolamento & purificação , Formigas , Análise Mutacional de DNA , Humanos , Neuropeptídeos/genética , Neuropeptídeos/isolamento & purificação , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
20.
Sci Rep ; 6: 39177, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958372

RESUMO

Oxytocin and vasopressin mediate a range of physiological functions that are important for osmoregulation, reproduction, social behaviour, memory and learning. The origin of this signalling system is thought to date back ~600 million years. Oxytocin/vasopressin-like peptides have been identified in several invertebrate species and they appear to be functionally related across the entire animal kingdom. There is little information available about the biology of this peptide G protein-coupled receptor signalling system in insects. Recently over 200 insect genome/transcriptome datasets were released allowing investigation of the molecular structure and phylogenetic distribution of the insect oxytocin/vasopressin orthologue - inotocin peptides and their receptors. The signalling system is present in early arthropods and representatives of some early-diverging lineages. However, Trichoptera, Lepidoptera, Siphonaptera, Mecoptera and Diptera, lack the presence of inotocin genes, which suggests the peptide-receptor system was probably lost in their common ancestor ~280 million-years-ago. In addition we detected several losses of the inotocin signalling system in Hemiptera (white flies, scale insects and aphids), and the complete absence in spiders (Chelicerata). This unique insight into evolutionarily patterns and sequence diversity of neuroendocrine hormones will provide opportunities to elucidate the physiology of the inotocin signalling system in one of the largest group of animals.


Assuntos
Proteínas de Insetos/metabolismo , Insetos/metabolismo , Neuropeptídeos/metabolismo , Ocitocina/metabolismo , Vasopressinas/metabolismo , Sequência de Aminoácidos , Animais , Bases de Dados Genéticas , Hemípteros/genética , Hemípteros/metabolismo , Holometábolos/genética , Holometábolos/metabolismo , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Insetos/genética , Neuropeptídeos/classificação , Neuropeptídeos/genética , Ocitocina/classificação , Ocitocina/genética , Filogenia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Aranhas/genética , Aranhas/metabolismo , Vasopressinas/classificação , Vasopressinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...